skip to main content


Search for: All records

Creators/Authors contains: "Zimin, Aleksey"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Whitebark pine (WBP, Pinus albicaulis) is a white pine of subalpine regions in the Western contiguous United States and Canada. WBP has become critically threatened throughout a significant part of its natural range due to mortality from the introduced fungal pathogen white pine blister rust (WPBR, Cronartium ribicola) and additional threats from mountain pine beetle (Dendroctonus ponderosae), wildfire, and maladaptation due to changing climate. Vast acreages of WBP have suffered nearly complete mortality. Genomic technologies can contribute to a faster, more cost-effective approach to the traditional practices of identifying disease-resistant, climate-adapted seed sources for restoration. With deep-coverage Illumina short reads of haploid megagametophyte tissue and Oxford Nanopore long reads of diploid needle tissue, followed by a hybrid, multistep assembly approach, we produced a final assembly containing 27.6 Gb of sequence in 92,740 contigs (N50 537,007 bp) and 34,716 scaffolds (N50 2.0 Gb). Approximately 87.2% (24.0 Gb) of total sequence was placed on the 12 WBP chromosomes. Annotation yielded 25,362 protein-coding genes, and over 77% of the genome was characterized as repeats. WBP has demonstrated the greatest variation in resistance to WPBR among the North American white pines. Candidate genes for quantitative resistance include disease resistance genes known as nucleotide-binding leucine-rich repeat receptors (NLRs). A combination of protein domain alignments and direct genome scanning was employed to fully describe the 3 subclasses of NLRs. Our high-quality reference sequence and annotation provide a marked improvement in NLR identification compared to previous assessments that leveraged de novo-assembled transcriptomes.

     
    more » « less
  2. Zufall, Rebecca (Ed.)
    Abstract

    Stalk-eyed flies in the genus Teleopsis carry selfish genetic elements that induce sex ratio (SR) meiotic drive and impact the fitness of male and female carriers. Here, we assemble and describe a chromosome-level genome assembly of the stalk-eyed fly, Teleopsis dalmanni, to elucidate patterns of divergence associated with SR. The genome contains tens of thousands of transposable element (TE) insertions and hundreds of transcriptionally and insertionally active TE families. By resequencing pools of SR and ST males using short and long reads, we find widespread differentiation and divergence between XSR and XST associated with multiple nested inversions involving most of the SR haplotype. Examination of genomic coverage and gene expression data revealed seven X-linked genes with elevated expression and coverage in SR males. The most extreme and likely drive candidate involves an XSR-specific expansion of an array of partial copies of JASPer, a gene necessary for maintenance of euchromatin and associated with regulation of TE expression. In addition, we find evidence for rapid protein evolution between XSR and XST for testis expressed and novel genes, that is, either recent duplicates or lacking a Dipteran ortholog, including an X-linked duplicate of maelstrom, which is also involved in TE silencing. Overall, the evidence suggests that this ancient XSR polymorphism has had a variety of impacts on repetitive DNA and its regulation in this species.

     
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  3. Abstract

    The orb web is a remarkable example of animal architecture that is observed in families of spiders that diverged over 200 million years ago. While several genomes exist for araneid orb-weavers, none exist for other orb-weaving families, hampering efforts to investigate the genetic basis of this complex behavior. Here we present a chromosome-level genome assembly for the cribellate orb-weaving spider Uloborus diversus. The assembly reinforces evidence of an ancient arachnid genome duplication and identifies complete open reading frames for every class of spidroin gene, which encode the proteins that are the key structural components of spider silks. We identified the 2 X chromosomes for U. diversus and identify candidate sex-determining loci. This chromosome-level assembly will be a valuable resource for evolutionary research into the origins of orb-weaving, spidroin evolution, chromosomal rearrangement, and chromosomal sex determination in spiders.

     
    more » « less
  4. Abstract

    We used long-read DNA sequencing to assemble the genome of a Southern Han Chinese male. We organized the sequence into chromosomes and filled in gaps using the recently completed T2T-CHM13 genome as a guide, yielding a gap-free genome, Han1, containing 3,099,707,698 bases. Using the T2T-CHM13 annotation as a reference, we mapped all genes onto the Han1 genome and identified additional gene copies, generating a total of 60,708 putative genes, of which 20,003 are protein-coding. A comprehensive comparison between the genes revealed that 235 protein-coding genes were substantially different between the individuals, with frameshifts or truncations affecting the protein-coding sequence. Most of these were heterozygous variants in which one gene copy was unaffected. This represents the first gene-level comparison between two finished, annotated individual human genomes.

     
    more » « less
  5. Shao, Mingfu (Ed.)
    Third-generation sequencing technologies can generate very long reads with relatively high error rates. The lengths of the reads, which sometimes exceed one million bases, make them invaluable for resolving complex repeats that cannot be assembled using shorter reads. Many high-quality genome assemblies have already been produced, curated, and annotated using the previous generation of sequencing data, and full re-assembly of these genomes with long reads is not always practical or cost-effective. One strategy to upgrade existing assemblies is to generate additional coverage using long-read data, and add that to the previously assembled contigs. SAMBA is a tool that is designed to scaffold and gap-fill existing genome assemblies with additional long-read data, resulting in substantially greater contiguity. SAMBA is the only tool of its kind that also computes and fills in the sequence for all spanned gaps in the scaffolds, yielding much longer contigs. Here we compare SAMBA to several similar tools capable of re-scaffolding assemblies using long-read data, and we show that SAMBA yields better contiguity and introduces fewer errors than competing methods. SAMBA is open-source software that is distributed at https://github.com/alekseyzimin/masurca . 
    more » « less
  6. Abstract

    The genusQuercus, which emerged ∼55 million years ago during globally warm temperatures, diversified into ∼450 extant species. We present a high-quality de novo genome assembly of a California endemic oak,Quercus lobata, revealing features consistent with oak evolutionary success. Effective population size remained large throughout history despite declining since early Miocene. Analysis of 39,373 mapped protein-coding genes outlined copious duplications consistent with genetic and phenotypic diversity, both by retention of genes created during the ancient γ whole genome hexaploid duplication event and by tandem duplication within families, including numerous resistance genes and a very large block of duplicated DUF247 genes, which have been found to be associated with self-incompatibility in grasses. An additional surprising finding is that subcontext-specific patterns of DNA methylation associated with transposable elements reveal broadly-distributed heterochromatin in intergenic regions, similar to grasses. Collectively, these features promote genetic and phenotypic variation that would facilitate adaptability to changing environments.

     
    more » « less
  7. Bread wheat (Triticum aestivum) is a major food crop and an important plant system for agricultural genetics research. However, due to the complexity and size of its allohexaploid genome, genomic resources are limited compared to other major crops. The IWGSC recently published a reference genome and associated annotation (IWGSC CS v1.0, Chinese Spring) that has been widely adopted and utilized by the wheat community. Although this reference assembly represents all three wheat subgenomes at chromosome-scale, it was derived from short reads, and thus is missing a substantial portion of the expected 16 Gbp of genomic sequence. We earlier published an independent wheat assembly (Triticum_aestivum_3.1, Chinese Spring) that came much closer in length to the expected genome size, although it was only a contig-level assembly lacking gene annotations. Here, we describe a reference-guided effort to scaffold those contigs into chromosome-length pseudomolecules, add in any missing sequence that was unique to the IWGSC CS v1.0 assembly, and annotate the resulting pseudomolecules with genes. Our updated assembly, Triticum_aestivum_4.0, contains 15.07 Gbp of non-gap sequence anchored to chromosomes, which is 1.2 Gbps more than the previous reference assembly. It includes 108,639 genes unambiguously localized to chromosomes, including over 2,000 genes that were previously unplaced. We also discovered more than 5,700 additional gene copies, facilitating the accurate annotation of functional gene duplications including at the Ppd-B1 photoperiod response locus. 
    more » « less
  8. We sequenced the genome of the North American groundhog, Marmota monax , also known as the woodchuck. Our sequencing strategy included a combination of short, high-quality Illumina reads plus long reads generated by both Pacific Biosciences and Oxford Nanopore instruments. Assembly of the combined data produced a genome of 2.74 Gbp in total length, with an N50 contig size of 1,094,236 bp. To annotate the genome, we mapped the genes from another M. monax genome and from the closely related Alpine marmot, Marmota marmota , onto our assembly, resulting in 20,559 annotated protein-coding genes and 28,135 transcripts. The genome assembly and annotation are available in GenBank under BioProject PRJNA587092 . 
    more » « less